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A Least-Squares Analysis of the Diffuse X-ray Scattering from Carbons 
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In an earlier paper, the theoretical X-ray intensities scattered from perfectly regular, condensed, 
aromatic molecules of various sizes were presented in numerical form. The present paper describes 
a matrix method whereby a linear combination of such theoretical curves may be fitted to the 
observed intensities with minimum total square error; the coefficients in the combination so found 
at once provide an estimate of the distribution of molecular sizes within the material. Some features 
of the method are briefly discussed and some experimental examples are given. 

Introduct ion  

Hitherto, the sizes of the flat, aromatic, graphite-like 
molecules (or 'layers') which occur in all 'amorphous' 
carbons, have been estimated from X-ray measure- 
ments by one or other of two methods: (i) a direct 
comparison of the observed diffraction bands with the 
line profiles calculated by Warren (1941), Wilson 
(1949) and Brindley & Mdring (1951), a method which 
has been used by Franklin (1950, 1951a, b), Hirsch 
(1954) and others; and (ii) the inversion of the ob- 
served intensities by the Debye radial distribution 
function, as was done by Franklin (1950), :Nelson 
(1954) and others. Both the above techniques are 
subject to serious limitations: the first technique is 
not strictly applicable when a wide distribution of 
molecular sizes is present in the specimen, since the 
large molecules contribute heavily to sharp central 
maxima, and are principally responsible for the height 
of each peak, whereas the smaller molecules produce 
what appears as a broadening of each peak at its base. 
:No single curve of the Warren type will fit such an 
observed curve, and what is judged to be the best fit 
of a single curve in these circumstances usually leads 
to an over-estimate of the mean layer-size, since the 
small molecules are not properly accounted for. 

The second method is beset with even greater dif- 
ficulties if layer sizes are to be determined. First, if 
atomic rather than electronic distributions are of 
interest, it is necessary to subtract the incoherent 
(Compton) scattering from the observations, and to 
divide the remainder by the square of the atomic 
scattering factor for carbon, f~, before inversion. The 
observations must therefore be placed on an absolute 
scale, which is usually done by scaling at high angles. 
This procedure is itself subject to error, especially as 
the subtraction, important at medium angles, depends 
on data at high angles and therefore calls for long-range 
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consistency in both theoretical and observational data. 
Furthermore, since the incoherent radiation forms the 
greater part of the scattering, even at medium angles, 
a small error in scaling can produce a large error in 
the remainder, which has yet to be divided by f~ 
before the data are ready for inversion. 

Secondly, in the case of carbons it is usually difficult 
to cut off the intensity curve satisfactorily for Fourier 
inversion. 

Thirdly, the radial distribution of atomic centres, 
when obtained, does not directly give information 
concerning the sizes of the layers, but rather, the in- 
formation serves to demonstrate the fact that  the 
atoms are arranged, as in graphite, on a hexagonal net. 
Information concerning the sizes of the layers can, in 
principle, be obtained from the envelope of the peaks 
within the radial distribution curve, as this should 
have a definite shape (for a single size group), and 
should fall to zero when the interatomic vector, r, 
becomes equal to the diameter of the layers present. 
If a distribution of sizes is present, the problem be- 
comes more complicated, and the envelope becomes 
concave upwards, with the cut-off again indicating the 
size of the larger molecules. 

The method of analysis now to be described makes 
the assumptions, based on the earlier work of others, 
that  the layers present in amorphous carbons are 
graphite-like in their internal co-ordination, aIe 
generally randomly orientated, but with a systematic 
tendency to align themselves parallel to their closest 
neighbours, and that  they are perfectly regular in their 
internal structure. This last assumption is the only 
one so far not adequately substantiated, and there is 
reason to believe that  it is only partially true. Imper- 
fections, if such exist, cause the apparent size of the 
molecules to be smaller than the true size. 

The method then has the following points to com- 
mend it: 

1. I t  directly yields a distribution of molecular sizes, 
usually presented in histogram form, the terms in 
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which represent fractions by weight of material in 
particular size groups, and which are usually reliable 
to a few per cent in favourable eases. 

2. The pre-trea.tment of the observational data (in 
the Debye-Scherrer case) is limited to the removal of 
the polarization factor, which depends on the nature 
of the monochromator employed, and which may vary 
from one application to another. 

3. After allowing for such pre-treatment, it attaches 
equal weight to all observations, and guarantees the 
best possible fitting between observed and calculated 
data. 

4. I t  places minimum reliance on the theoretical 
data for the incoherent scattering, the effect of which 
falls out entirely when the first eigenfunction is ex- 
tracted (see below). 

5. I t  works within an angular range chosen by the 
author as containing useful information unmasked by 
irrelevant effects, and is completely independent of 
the behaviour of the observed curve outside this range, 
so that  uncertainties in the values of the Compton 
scattering at high angles are immaterial. The inversion 
is dependent on eigenfunctions which are perfectly 
orthogonal within this range, and, unlike a Fourier 
inversion over an arbitrary interval, has no cut-off 
problem. 

6. As the mathematics is entirely linear, a weighted 
mean determination of the size distribution can be 
obtained from two or more sets of data, by adding the 
intensity measurements together before the inversion 
is done. 

7. I t  is very rapid in its application; the inversion 
process requiring under an hour with an electric desk 
calculator. 

In its present form the method makes no allowance 
for the presence of non-carbon atoms. Such 'foreign' 
atoms are assumed to scatter X-rays with the same 
angular dependence as does carbon within the working 
range, except for a constant factor approximately 
equal to the square of the ratio of the atomic number 
of the element concerned to that  of carbon. All such 
atoms are assumed to contribute only as single atom 
scatterers, hav'mg no systematic phase relationship to 
their neighbouring atoms. In a later paper, which will 
deal with the results obtained from a series of car- 
bonization experiments, these assumptions will be 
critically re-examined and a treatment of the limiting 
effects of oxygen and hydrogen will be given; and their 
influence on the results obtained will be illustrated. 
At the same time, allowance will be made for the 
revision of the figures for Compton scattering oc- 
casioned by the recent publication by Keating & 
Vineyard (1956) of accurate figures for this function. 
For the purposes of the present paper, however, these 
revisions may be ignored, though any accurate ap- 
plication of the method described herein should take 
them into account. 

The mathemat i ca l  bas is  of the method  

If we assume that an amorphous carbon consists of an 
assembly of graphite-like layers of various sizes, to- 
gether with some disorganized material which may be 
regarded as producing gas-like (i.e. single-atom) scat- 
tering, then, in the absence of any phase coherence 
between the various scattering units so defined, the 
intensity of X-rays scattered from such an assembly is 
a linear combination of the intensity functions as- 
sociated with each layer-size group. The coefficients 
in such a combination are proportional to the fraction, 
by weight, of material in each size group, provided 
that the intensity functions are expressed on a basis 
of scattering per atom. On such a basis, the intensity 
function for a given size group may be expressed as 

Bi(s) = p J i ( s )  + C(s) , (1) 

in which B~(s) is the intensity scattered by size group 
i as a function of s, (s = 2 sin 0/k), f is the atomic 
scattering factor for carbon, Ji(s) is the scattering in 
atomic units for size group i, as defined and calculated 
in a previous paper (Diamond, 1957) and C(s) is the 
incoherent (Compton) scattering. We then have 

l ( s )  = .,F, ~ i B ~ ( s ) + v ( s )  , (2) 
i 

in which I(s) is the observed intensity, v(s) is a residual 
error and the Ai's are the coefficients of each size 
group, such that  ~ 2i is equal to the ratio of absolute 

i 
to experimental intensity units. 

In the circumstances in which the present work was 
developed, only one type of phase coherence between 
the scattering units is encountered--that due to the 
'turbostratic' packing of the layers parallel to one 
another. Such packing produces local phase coherence 
along a line normal to any given layer, so that  the 
intensity in reciprocal space is that  due to the layers 
taken independently (i.e. in accordance with equation 
(2)), together with a modulation along the line (00/) 
in reciprocal space. All other regions of reciprocal 
space are unaffected by such packing, and it happens 
that  in the applications of which the author has ex- 
perience the (00/) variation has decayed to negligible 
amplitude for 1 > 4 so that  the interpretation of 
the (11) and (20) bands (which occur at higher s values 
than that  corresponding to (005)) is not complicated 
by the packing 0f the layers. If, however, the packing 
is good enough for a (006) reflection to be present, it 
will confuse the interpretation unless it is accurately 
subtracted out. If the packing is sufficiently poor, 
equation (2) may be taken as a complete representation 
of the intensity (but for geometrical factors) for regions 
of s > 0-65 A -1. 

We now select 31 points on the s scale, evenly 
spaced in the range 0.66 _< s _< 0-96 A -1, and measure 
the observed intensity at each point, divide each by 
the polarization factor, and arrange the resulting 
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readings in order in a column matrix, I, of 31 elements, 
with the value for s = 0-66 A -1 heading the column. 
We also define a matrix B having 31 columns corre- 
sponding to the 31 s values, and 8 rows corresponding 
to 8 selected size groups, and Whose elements are the 
appropriate B values, in accordance with equation (1). 
We also define a column matrix, ~, whose 8 elements 
are the coefficients in the linear combination, and a 
column matrix v containing the 31 residuals. Equation 
(2) may then be rewritten as 

I = B ' ~ + v ,  (3) 

in which the prime denotes a transpose (i.e. rows and 
columns interchanged). I t  is now our purpose to 
discover ~ such that  the product v 'v (sum of the 
squares of the errors) is a minimum. 

I t  may be said at once that  the residuals, v, may 
not contain any linear combination of the theoretical 
functions, B, (provided these are linearly independent) 
since, if they did, a reduction in the sum of their 
squares would be effected by transference of that  com- 
bination to the combination B'~. Since the residuals 
are to be void of any linear combination of the quan- 
tities B, they must contain no component of any of 
the quantities B taken singly; thus the matrix v must 
be orthogonal to every row of B, i.e. 

By -- 0 .  (4) 

Premultiplication of equation (3) by B then yields at 
once 

B I  -- B B ' ~ ,  (5) 

which is an equation (the 'normal equations' in matrix 
form) soluble for R. The same result may be obtained 

by setting ~ .  Zv ~ = 0 for all i. 

Now BB' (being equal to its transpose) is a sym- 
metrical square matrix (8 × 8), and as such it may be 
considered as a symmetrical, second-rank tensor relat- 
ing the two 8-dimensional vectors 2 and BI, and may 
therefore be represented by an 8-dimensional ellipsoid. 
BB' contains theoretical quantities only, and so may 
be treated without reference to any one set of observa- 
tions, all the experimental information lying in the two 
vectors. 

The shape and orientation of the representational 
ellipsoid are of prime importance in determining the 
characteristics of the problem, and are worthy of some 
examination. For any given set of intensities, we have 
from equation (3) that 

8v -- - B ' 8 ~ ,  (6) 

and if a is the sum of the squares of the errors, then 
a = v 'v and 

~a = v 'Sv+[iv 'v+[ iv ' [ iv ,  (7) 

which, with equations (6) and (4), gives 

~a  = [ i ~ ' B B ' [ ~ ;  (8) 

i.e. a given departure, 8~, from the least-squares 
solution in 2-space increases the sum of the squares 
of the errors by ~a, given above. Or, conversely, 
equation (8) may be taken to define a contour of 
constant error in the neighbourhood of the solution. 
Such a contour is clearly the representative ellipsoid 
of BB' in 2-space, being a quadratic in 8~. Note that  
since equation (8) involves 8~ but not ~ itself, such a 
contour of constant error is independent of the location 
of the solution. 

A further appreciation of the shape and orientation 
of the ellipsoid may be obtained from the following 
discussion. Suppose that  it is desired to fit to an ob- 
served intensity curve a linear combination of only 
two, closely similar, theoretical functions B. Fig. 1 

22 

A 

o fit1 B, 

Fig. 1. Two-var iable  example  in L-space. 

then represents the situation in two-dimensional 
2-space, in which the point A represents the least- 
squares solution. I t  is then clear that  a departure from 
A in the direction of 8~,  by increasing both the co- 
efficients 21 and 22, will cause the fitted theoretical 
curve to be raised over-all, with consequent rapid 
increase in a. The solution A is therefore closely defined 
in this direction. 

If, on the other hand, a departure is made from A 
in the direction of ~2a, the calculated curve will re- 
main close to the observed curve, but will change a 
little in shape, depending on the details of the two 
theoretical curves employed. Comparatively large 
departures from 11 can therefore be tolerated in the 
fl direction. 

In the extreme case when the two theoretical curves 
are identical, the solution A will be replaced by a line 
running in the fl direction. In these and similar circum- 
stances the normal equations are said to be ill-con- 
ditioned (Hartree, 1952), and it is clearly preferable to 
specify A in terms of coordinates 2~ and 2~, as the 
c~ component is quite unaffected by indeterminacy in 
the fl component. 

Since the theoretical curves employed (B values) do 
resemble one another, and approach linear combina- 
tions of one another, it has been found necessary to 
determine the 8-dimensional analogues of the direc- 
tions ~ and ft. 

To obtain the principal axes of the ellipsoid defined 
by BB', we seek a unitary orthogonal matrix A, such 
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tha t  the ma t r ix  A B B ' A '  is in diagonal form. The rows 
of the mat r ix  A are then  the components of the uni t  
principal  axes of the elhpsoid BB'  in k-space expressed 
on the original axes, and are known as the eigenvectors 
of  the problem. These are shown in :Fig. 3. 

The mat r ix  A has been found by  a procedure of 
i terat ive rotation, using the computer  EDSAC and a 
sub-routine designed by  Dr D . J .  Wheeler  of the 
Univers i ty  Mathemat ica l  Laboratory,  Cambridge. 

A is evident ly  the poly-dimensional  analogue of the 
ar ray  of direction cosines famil iar  in three-dimensional  
t ransformations,  and as such (and by  definition) it 
has  the proper ty  tha t  

A ' A  = E ,  (9) 

in which E is the uni t  diagonal  matr ix.  Premul t ip ly ing  
equation (5) by  A and interposing A ' A  gives 

A B I  = A B B ' . A ' A . X  . (10) 

Now A B B ' A '  is in diagonal form, whence its reciprocal 
is obtained by  invert ing its diagonal elements, whence 

U = A~ = (ABB'A ' ) - IABI  (11) 
and 

= A ' (ABB'A ' ) -XABI  - H I .  (12) 

Thus H is a matr ix,  reciprocal to B, which contains 
theoretical  quanti t ies  only, such tha t  the distr ibution 

is obtained by  premul t ip ly ing I by  H. 
Now we m a y  define a mat r ix  C, given by 

in terms of which 
AB = C ,  (13) 

la = (CC')-ICI • (14) 

By  equation (13), and from the diagonal nature  of 
ABB 'A ' ,  we see tha t  the rows of C (the eigenfunctions) 
form a set of orthogonal l inear combinations of the 
functions which form the rows of B;  and from equa- 
t ion (14) we see tha t  we obtain the solution, Is, by  
mul t ip ly ing the funct ion I by  each row of C, summing 
the products, and dividing the result by  the appro- 
priate element (eigenvalue) on the diagonal of CC'. 
This m a y  be recognized as parallel  to the procedure 
of Fourier  analysis of a funct ion of one variable,  in 
which the eigenfunctions are sines and cosines and the 
eigenvalues are all the  same. The eigenfunctions of the 
present problem (actually the quantities (CC')-½C) 
are shown in Fig. 2; their  resemblance to cosines is 
quite marked.  

Now it has been pointed out tha t  the elements of ia 
(i.e. the coordinates of the solution A expressed on 
the principal  axes) a r e  independent  of one another,  
and tha t  some of them m a y  be quite inaccurately 
determined if the theoretical  curves employed ap- 
proximate  to l inear combinations of one another. 
Since a molecular size group cannot be negat ively 
populated,  i t  is clear tha t  in the two-dimensional 
example of Fig. i ,  the solution, A, must  lie in the first 

~ 0 

_ f j J -  

Peak ~po.si t ion . . 

0:7 0"8 0"9 

s (h-')  

- - 6 f  

Fig. 2. The eigenfunctions of the  problem. Each  funct ion  is a 
l inear combina t ion  of the  theoret ical  in tens i ty  funct ions  
employed,  and  each one is or thogonal  to  all the  others.  

quadrant ,  so tha t  a constraint  is placed on the  fl 
component,  (];t~l < ;t~ > 0). In  the polydimensional  
case, the least accurate component,  the 0 component,  

nl lLI l l l  

Fig. 3. The eigenvectors of the problem. The terms in each of 
these vectors are the coefficients which yield the orthogonal 
combinations of Fig. 2. They are also normalized and 
orthogonal to one another. Each experimental histogram 
is made up from a combination of these in the manner of 
Fig. 4. The eight size groups appearing in each eigenvector 
are, from left to right, single atoms, pairs of atoms, and 
aromatic layers of nominal diameters 5.8, 8.4, 10, 15, 20 
and 30 /~ respectively. 
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say, is again subject to a similar constraint for physical 
reasons. The least accurately determined component 
is always the one which (see :Fig. 3) has alternating 
terms (cf. ~ component in Fig. 1); thus a molecular 
size distribution containing a large component of this 
type will be polymodal, whereas one would expect a 
distribution to be unimodal or bimodal but  probably 
not more. A large 0 component is therefore improbable 
and subject to definite limits, and since it is not 
possible to measure it accurately it is considered best 
to constrain its coefficient to zero, and to bear in mind 
when considering a molecular size histogram that  the 
number of degrees of freedom allowed to it may be 
less (by one or two) than the number of terms in the 
histogram. 

The elimination of such immeasurable components 
may conveniently be effected by incorporating a filter 
matrix Z / i n  H. The matrix Z / i s  a diagonal square 
with f l ' s  on the diagonal (f = number of degrees of 
freedom allowed), and ( n - f ) 0 ' s  (n = number of size- 
groups used in the histograms). We then employ in 
equation (12) a matr ix H/ given by 

H / =  A 'Z / (ABB 'A ' ) - IAB,  (15) 

+ 0"403 a 

-o.3os ~ J-~ "--U-L_J 

-0"228 y 

+0"288 ~ ~ I---I 

+0.093 ~ • ~ - I . : _ ~ J - - L ~  

-t-0"853 0 I--! [--] r-a U" 

60 

~ I--11 I I I I 1 0 

t t6o 
~, 5o 

- -  0 t . - - . I  

80 

40 

Fig. 4. The deve lopmen t  of an exper imenta l  h i s togram from 
its components ,  showing the  effect  of filtering. The example  
was  ob ta ined  f rom an earlier set  of mat r ices  than  those  now 
presented ,  wherefore  the  h is tograms shown have  only  six 
te rms  corresponding (from left  to right) to amorphous  
mater ia l  (single-atom scat ter ing) and to a romat ic  layers of 
nominal  d iameters  5.8, 8.4, 10, 15 and 20 A. The ver t ical  
scale is in weight  per  cent.  The example  is of a coal (initially 
84% C d .a . f ,  basis) carbonized for 3 hr. a t  300 ° C., hav ing  
an e s t ima ted  carbon  con ten t  of 81%.  

which extracts a maximum of information from the 
observations whilst preventing the perturbation of the 
results by effects which are beyond resolution. 

Fig. 4 illustrates the development of a histogram 
from its components. The coefficients on the left of 
the diagram are the elements of la. The first component, 
~, having all positive terms, sets the overall height 
of the fitted theoretical curve. I t  is the analogue of the 
constant term tha t  generally heads a Fourier cosine 
series. I t  is also the only term for which the sum of the 
coefficients, ~t, relating to the size groups, differs 
significantly from zero, so tha t  the coefficients of the 
remaining eigenfunetions are derived from the coherent 
part  of the scattering only. 

The fi term then determines whether the layers 
present are predominantly large (fi positive) or small 
(/~ negative). The fl eigenfunction depends for its shape 
almost entirely on differences between the accurate 
and smooth functions J(s), since the same f2 values 
are used for each B(s) and the Compton scattering 
drops out. The method therefore makes the best 
possible use of the theoretical data. 

The remaining eigenvectors fill in the form of the 
histogram with increasing detail and decreasing ac- 
curacy. In  particular, the 0 component, which is 
beyond resolution, has an absurdly large coefficient, 
the effect of which is to mask the good information 
obtained from the first five eigenfunctions. The histo- 
gram shown in the dotted box is therefore adopted 
as the final result; it may  be obtained by a single 
application of the matrix Hs, five degrees of freedom 
being considered optimum. 

S p e c i f i c a t i o n  a n d  m o d e  o f  u s e  

The matrices now presented employ six nominal layer 
sizes (L values as previously defined (Diamond, 1957)) 
of 5.8, 8.4, 10, 15, 20 and 30 A, and in addition they 
allow for single atoms and for pairs of atoms 1.54 J~ 
apart. The characteristics described below indicate, 
however, that  it 's not possible to distinguish between 
single atoms and pairs of atoms, so tha t  many of the 
following histograms show only seven terms, the co- 
efficients for pairs and singles having been added 
together. In cases where only six terms are shown, the 
results are obtained from an earlier set of matrices 
(not published), in which provision was not made for 
layers of 30 A diameter, nor for pairs of atoms. 

The present matrices are based on an assumed C-C 
bond length of 1-405 J~ for all six aromatic size groups, 
and they therefore use J(s) figures derived from, but 
not identical with, those previously published (Dia- 
mond, 1957). The use of a single bond length, different 
from either the benzene (1-39 A) or graphite (1.42 A) 
values, has the advantage tha t  an accurate mean bond 
length for the material investigated may be obtained 
by measuring the disregistry on the s scale between 
the observed curve and the fitted theoretical curve. 
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The fractional change in bond length relative to the 
assumed value is then given by 

= - ~ v s I ' / Z ( s I ' )  ~ , (16) 

in which I '  is ~ I / ~ s  and the summation is over the 
fit ted range. Allocation of assumed bond lengths 
thought to be appropriate to each L value results in 
confusion if an interpretation of ~ is to be sought. 

In  cases where the experimentally determined bond 
length hes outside the range 1.400 < 1 < 1.410 /~, it 
is advisable to perform two analyses, using the cal- 
culated curve from the first analysis to determine ~, 
which is then used in a three-term interpolation for- 
mula to side-shift the observed intensity curve to a 
position corresponding to 1 = 1.405 ~.  The shifted 
observed curve is then used for the final analysis. 
This method of determining the mean bond length 
generally leads to values having a random error of 
,-~ 0 .002  A.  

I t  is noteworthy tha t  a slight horizontal disregistry 
between observed and calculated intensity curves has 
very httle effect on the layer-size histograms obtained, 
since such a disregistry introduces a nearly odd or 
sine-like function to the residuals, v, with respect to 
the peak position, whereas the eigenfunctions are 
nearly even or cosine-like. Thus a considerable contri- 
bution to v from this source may be tolerated whilst 
still maintaining the orthogonahty of v to B. The 
empirical limits to this tolerance are indicated above. 

Further  remarks on the measurement of 1 have been 
given by Diamond (1956, chap. 9) in which a scheme 
to include ~ I / ~ s  and sine-like eigenfunctions in the 
matrices is described. 

lengths, it is profitable to calculate a mean layer size 
given by 

= X ' ~ L / _ ~ ' ~ ,  (17) 

in which the prime denotes omission of the terms for 
single atoms and pairs. In computing L we drop much 
of the information contained in a histogram, but 
obtain a single parameter of high accuracy, since L 
is very little affected by errors in the coefficients of 
the least accurate eigenvectors. Thus successive deter- 
minations from a given sample may yield histograms of 
varying appearance, yet  having closely similar Z 

values. It may also be shown that the accuracy of 
decreases with increasing L. Random errors in L, for 
cokes formed below 1000 ° C., have generally been 
found to be of the order of 0.2-0.3 _~. These points are 
all exemplified in :Fig. 7, in which L values are shown 
alongside the histograms from which they were ob- 
tained. 

The figures employed for the atomic scattering 
factor are those given by Hoerni & Ibers (1954) for 
carbon in the valency state. Figures for f~ at the de- 
sired fine interval were obtained by careful graphical 

interpolation, followed by smoothing to bring second 
differences to nearly constant values. The least- 
squares analysis, is, however, quite insensitive to the 
choice of figures for f2 provided the same figures are 
used throughout. Tests have shown that  if the figures 
given by McWeeny (1951) are to be preferred to those 
of Hoerni & Ibers, then results obtained from these 
matrices will not be in error from this cause by more 
than 4 % in any one histogram term, even in the least 
favourable cases. 

The figures for the incoherent (Compton) scattering 
were taken from Compton & Allison (1935) and were 
treated in the same way as those fo r f  2. I t  is regrettable 
that  at the time the present matrices were computed 
and employed, no more accurate figures than these 
were available; the effects of errors from this source 
are, however, minimized by this interpretive technique, 
as indicated above. 

In common with tIirsch and J. D. Wat t  (private 
communications), it was found tha t  agreement be- 
tween observed and calculated curves in the range 
2.0 < s < 2.2 _~-1 was improved by omitting the 
Breit-Dirac relativistic recoil factor, B -a, from the 
figures for the Compton scattering (B = ratio of X-ray 
frequencies in the primary and scattered beams), and 
this has been done in computing the matrices. This 
factor has very little effect in the working range 
(~  3%), so tha t  the uncertainty attaching to this 
factor is of little consequence in this method, unlike 
methods which involve scaling at high angles. 

Some characteristics of the method,  
with examples  

]~efore any critical appreciation of results can be 
attempted, it is necessary to consider some of the 
characteristics of the matrices used, especially those 
associated with the filtering, and with certain types 
of systematic error. 

I t  is fruitful to consider the results obtained from 
the self-analysis of the theoretical curves used, i.e. the 
product HsB' (which is equal to A'ZsA ). Fig. 5(a-h) 
shows eight such self-analyses. In each case, the broken 
line represents the distribution to which the distribu- 
tion shown with a full line is calculated to correspond. 
First, as the eigenvectors of Fig. 3 show, the first five 
eigenvectors treat  the single atoms and pairs as almost 
the same, discrimination between them falling entirely 
to the 6th (~) vector, which is beyond resolution and 
excluded from H 5. The effect of this is obvious in 
:Fig. 5 (a, b) and entitles us to recombine the terms for 
single atoms and pairs, and to extend the interpreta- 
tion of this term to small aliphatic groupings of about 
one to three atoms. I t  is also noteworthy that,  since 
only the first three eigenvectors (Fig. 3) contain ap- 
preciable terms for the amorphous scattering, the 
amorphous term is generally the most accurate one 
in any experimentally determined histogram. 

Next we note tha t  narrow distributions at the 
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extremes of the range (Fig. 5(c, h)) are better  ap- 
proached t han  narrow distr ibutions in the middle of 
the range (Fig. 5(d, e,f)). The apparent  broadening 
in the la t ter  cases is due ent irely to the suppression 
of the ~ and 0 vectors, which have larger terms in 
the middle of the range t han  at the extremes. From 
inspection of these figures, we conclude tha t  an ex- 
per imenta l  his togram m a y  be broader than  the true 
his togram but  cannot be narrower;  from which we 
infer tha t  a narrow exper imental  his togram probably  
implies an even narrower true distribution. 

Fig. 5 (i-r) shows analyses of distr ibutions with 50 % 
of mater ia l  in each of two, or with 33% in each of 
three neighbouring size groups. From an inspection 
of these we m a y  conclude tha t  the broader and more 
smoothly  varying  a given dis t r ibut ion is, the  more 
fa i thful ly  it will be reproduced; thus the broad distribu- 
t ions which m a y  be expected to occur in practice 
should be interpreted with greater f ideli ty t han  tha t  
pertaining in the artificial  circumstances of Fig. 5 (a-h). 

Thus the effect of the exclusion of the ~, ~ and 0 
vectors is a genuine up-grading of the numerical  ac- 
curacy of the terms in the result ing histograms, at  
the expense of down-grading their  interpret ive signifi- 
cance, thus yielding informat ion of op t imum value. 
The histograms obtained are a convolution of the true 
distr ibut ion with the distr ibutions of Fig. 5(a-h), so 
tha t  any  term in such a his togram no longer has the 
significance of mater ia l  in tha t  size group alone, bu t  
of sizes in the close neighbourhood of the nominal  
size. 

In  addi t ion to the above characteristics, which are 
purely properties of the matrices themselves,  there are 
m a n y  others which involve the na ture  of the carbons 
invest igated and the ver i ty  of the assumed model upon 
which the interpreta t ion is based. A number  of such 
characteristics are to be described in another  paper, 
in which the results of an invest igat ion into the struc- 
tures of carbonized coals will be presented. However, 
as an example  of the manner  in which such aberrat ions 
m a y  be studied, we show here the effect produced by  
an error in the posit ioning of the origin of intensi ty,  
or by  fluorescence in the specimen. 

Since the mathemat ics  of the interpreta t ion is en- 
t i rely linear, i t  is clear tha t  the effect of adding to the 
observed intensit ies any  function, T, is to add to the 
results obtained a ma t r ix  HsT;  and in cases such as 
background error, where T is a known function, it 
m a y  be easier to subtract  its effect from the histograms 
obtained than  from the init ial  in tens i ty  readings. Fig. 

Fig. 6. The effect of fluorescence or an error in positioning the 
origin of intensity. 
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Fig. 7. Experimental  examples from a vacuum-carbonized coal of initially 84 % C. In this temperature  

range the carbon content  rises steadily from 86 % to 95 %. 

6(a) shows the type of term which may be attributed 
to fluorescence, or to an error in locating the origin 
of intensity, whilst Fig. 6(b) shows an experimental 
histogram which may be affected by fluorescence, and 
Fig. 6(c) shows the same after allowing for 4 % fluo- 
rescent radiation and renormalizing. 

I t  so happens that in this example the correction 
term (Fig. 6(a)) consists mainly of an s component, 
which is the least accurate component admitted to the 
histograms. Results similar to Fig. 6 (b) may arise from 
a random error in the s component, which is on the 
verge of resolution. When this occurs, it is considered 
justified to attenuate the ~ vector artificially, as in the 
example at the top of Fig. 7, in which the result before 
attenuation is shown in broken lines. I t  should be 
emphasized that  the increment in the total square error 
brought about by this attenuation is extremely slight, 
owing to the smallness of the ~ eigenvalue. 

Fig. 7 shows a series of results obtained from a 
caking coal, initially 84% carbon, carbonized 3 hr. 
in  vacuo at temperatures indicated. In each case, two 
independent determinations of the layer-size distribu- 
tion are shown in the left and central columns, the 
scales at the sides indicating weight per cent. In the 
third column, the first two columns are averaged, and 
~0~led down in such a way that  the sum of the terms 
in the histogram, plus the amount of material evapo- 
rated, designated V, comes to 100 %. The figure shown 
above each determination is L, the mean layer size, 
in _£_ngstrSm units. The figure illustrates the general 
standard of consistency and reliability to be expected. 
The two determinations at 1000 ° C. also illustrate a 
type of error to which the system is particularly sensi- 
tive, namely that  due to an error in measurement of 
the (20) band. This band occurs on the high-angle side 
of the (11) peak, and is difficult to measure accurately, 

since it appears as little more than an inflexion on a 
'tail'. If the (20) band is over-estimated, the effect is 
to emphasize the bi-modal nature of the result, as in 
the 1000 ° C. example, centre column. If the (20) band 
is underestimated, the centre of the resulting histo- 
gram is enhanced. :Now if photometric resolution is 
poor, such an inflexion is more likely to be under- 
estimated than over-estimated, wherefore it may be 
argued that  the true distributions should be at least 
as bi-modal as those obtained, so that  a tendency to 
bi-modality in the specimens may be taken as estab- 
lished by these results. 

(11) peak 
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0.I 0:7 q 
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Fig. 8. Comparison of observed and calculated intensities in 
the fitted range. Full line: observed intensity;  broken line: 
calculated intensity. 

Fit t ing is effected in the range 0.66 < s < 0.96 A -1. The 
example is the 800 ° C. case of Fig. 7. 
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F i g .  8 s h o w s  a t y p i c a l  e x a m p l e  of  t h e  a g r e e m e n t  
o b t a i n e d  b e t w e e n  t h e  s i d e - s h i f t e d  o b s e r v e d  c u r v e  a n d  
t h e  f i t t e d  c a l c u l a t e d  c u r v e  w i t h i n  t h e  w o r k i n g  r a n g e .  
T h e  r . m . s ,  e r r o r  b e t w e e n  t h e  t w o  c u r v e s  is a b o u t  0 .05  
e l e c t r o n  u n i t s  of  i n t e n s i t y ,  o r  a p p r o x i m a t e l y  0 . 5 % .  
E r r o r  t h e o r y  s h o w s  t h a t ,  w i t h  f i ve  d e g r e e s  of  f r e e d o m ,  
r e a d i n g s  of  t h i s  o r d e r  of  a c c u r a c y  a r e  r e q u i r e d  t o  ob-  
t a i n  t h e  d e g r e e  of  s e l f - c o n s i s t e n c y  s h o w n  in  F i g .  7 ;  
a n d  t h i s  m a y  b e  o b t a i n e d  u s i n g  a s e l f - b a l a n c i n g  a n d  
a u t o m a t i c  r e c o r d i n g  p h o t o m e t e r ,  if a s m o o t h  m e a n  
l ine  is d r a w n  t h r o u g h  t h e  r e c o r d s  o b t a i n e d .  

Accuracy 

Final ly  we quote the results of theoretical  t r ea tmen t s  
of r andom errors. 

Since the  errors in the components  of la are inde- 
pendent  of one another,  whilst those of ~ are heavily 
coupled, only errors in ta m a y  readily be investigated.  

W e  f i n d  o/ f . ~ v  2 

a ( / ~ )  = ~ V  ( m - f ) ( C C ' ) ~  ' (18) 

in  w h i c h  a(/ ,~) is t h e  s t a n d a r d  d e v i a t i o n  of  / ~ ,  f is 
t h e  n u m b e r  of  d e g r e e s  of  f r e e d o m  a l l o w e d  ( g e n e r a l l y  5), 
m is t h e  n u m b e r  of  o b s e r v a t i o n s  e m p l o y e d  (31), a n d  

~ _ 2  ~ 1 ,  (19) 

t h e  r e s u l t  b e i n g  n o r m a l i z e d  if  t h e  e r ro r s ,  v, a r e  ex-  
p r e s s e d  in  e l e c t r o n  u n i t s .  

W e  a l so  f i n d  t h a t  

- -  e 

a(L) = a I/(11"8+0"047L2) ' (20) 

in which e is the  r.m.s, error between observed and 
calculated curves a t  the 31 f i t ted points expressed in 
electron units,  and a is the  fract ion of mater ia l  in 

aromat ic  form, L being expressed in ,~ngstrSm units. 

s A P 

0.66 9.630 9.71533 
0.67 9.505 9.66290 
0.68 9.390 9.61333 
0.69 9.285 9.56683 
0.70 9.180 9.51291 
0.71 9.085 9.46221 
0.72 9-000 9.41541 
0.73 8.920 9.36720 
0.74 8.840 9.31256 
0.75 8.750 9.24077 
0.76 8.665 9.16785 
0.77 8-590 9.09964 
0.78 8.520 9.03152 
0-79 8.460 8.96840 
0.80 8.400 8.90076 
0.81 8.340 8.82871 
0.82 8-285 8.75788 
0-83 8.225 8.67862 
0.84 8.170 8.60098 
0.85 8.125 8.53118 
0.86 8.080 8-45877 
0.87 8.040 8.38939 
0.88 8.000 8.31796 
0.89 7.965 8.24993 
0.90 7.930 8.18108 
0.91 7.895 8.11148 
0.92 7.860 8.04176 
0.93 7.830 7.97688 
0.94 7.795 7.90700 
0.95 7.760 7.83806 
0.96 7.730 7.77482 

The matrix B' 
5.8A 8.4A 1 o h  15A 20 h 30 A 

7.47338 7"32407 7.23026 7.04386 6.98496 6.85280 
7.37160 7"19868 7.11478 6.92407 6.85425 6.71860 
7"32010 7.08334 7"01246 6-82290 6-75048 6"60340 
7-30735 6.98231 6.92044 6-72655 6-66465 6.15080 
7.34006 6.89962 6.83151 6.64105 6.57491 6.43050 
7.42000 6.85844 6.75675 6.58580 6.49939 6.36120 
7.54631 6"87387 6.70885 6.56493 6.44610 6.29780 
7.70810 6"95706 6.70876 6.55836 6.43588 6-25290 
7.90434 7"12523 6.78912 6.54603 6.42531 6.22640 
8.11820 7"37300 6.96768 6.52749 6.41802 6.21860 
8.34791 7"70625 7.27354 6.57446 6.41612 6.22450 
8.59561 8.12215 7.72117 6.80465 6.44297 6.26890 
8.84432 8"58658 8"28566 7.33094 6"63659 6"33300 
9.08916 9.07942 8.93370 8-21038 7"34483 6"47250 
9"31334 9-55097 9"59542 9"36699 8.75485 7.45850 
9"50478 9.97165 10"20199 10.60752 10.67578 10.28910 
9.66713 10"31226 10.70277 11"68062 12"51061 13"85640 
9.78281 10.54494 11"03419 12.34323 13.56627 15-60460 
9.85987 10.66435 11.18319 12.49817 13-55881 14-72310 
9.90244 10.68167 11-15307 1~19054 12.73615 12.81630 
9"89908 10.59448 10.96193 11.56518 11.62128 11.40270 
9.86220 10.43163 10.66381 10.84789 10.66692 10.61860 
9.78682 10.20834 10"30365 10.16352 10.00292 10"06590 
9.68447 9.95365 9"93595 9.64437 9.55529 9.59610 
9.55331 9-69030 9.60245 9.29166 9-21484 9.20770 
9.40383 9"44184 9.32815 9-08305 8"96308 8.89290 
9.23985 9.21617 9.11825 8.97554 8.83862 8-65860 
9.07428 9.02507 8"97355 8.94515 8-86775 8"65590 
8.89758 8.85504 8.85413 8.93977 8-98354 8.98250 
8.72260 8.70578 8.75625 8.92325 9.07883 9.36660 
8-55785 8.57642 8.65606 8.86288 9-05532 9"37340 

Amorphous  
Pairs  
5.8A 
8.4 A 
10 A 
1 5 A  
20 A 
30 A 

0.7059421 
--0.6991435 

0-0614555 
--0-0278902 
--0-0223263 
--0.0320483 

0.0750120 
--0.0337179 

T h e  m a t r i x  A '  

a e fl 0 ~ y 

0.3353978 -0 .1140262  -0 .5285068  -0 .0341473  0.0295038 0-2938581 -0 .0918873  
0.3489017 0.0180540 -0 .5458069 0.0191565 -0 .0392034  0.2887727 -0 .0770779 
0.3533529 0.5608557 -0 .1364764  0.1543683 0.1952877 -0 .4059305  0.5580621 
0.3553148 -0 .3362153 0.0128989 -0 .6112744  -0 .4255372  -0 .4367605  0.1194496 
0.3562098 -0 .4950958 0.0889445 0.6691305 0.0604024 -0 .3692149  -0 .1785529  
0.3581366 0.1699643 0.2439186 -0 .3447466  0.6178506 -0 .0926505  -0 .5226403  
0.3594012 0.4612799 0-3439538 0.1819970 -0 .6042000  0.1902401 -0 .3158299  
0.3610433 -0 .2688589 0.4671951 -0 .0356657 0-1671159 0.5418700 0.5051053 
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s A 

0.66 0.066339 
0.67 0.064146 
0.68 0-055631 
0-69 0.043523 
0.70 0.027360 
0-71 0.007807 
0.72 --0.013761 
0.73 --0.033966 
0.74 --0.044313 
0.75 --0.041632 
0.76 --0.023716 
0.77 0-007309 
0.78 0-034076 
0.79 0.024648 
0.80 --0-009414 
0.81 --0.011144 
0.82 0.018665 
0.83 0-024220 
0.84 --0-006812 
0.85 --0.024668 
0.86 --0.006349 
0.87 0.017140 
0.88 0.020737 
0.89 0.007395 
0.90 -- 0.007953 
0.91 -- 0.021009 
0.92 --0.033320 
0.93 --0.040696 
0.94 --0.036077 
0.95 --0.023675 
0"96 --0.017264 

P 

8 0.018195 4 
8 0.018619 2 
9 0-019392 7 
9 0.019958 1 
5 0.020036 5 
5 0.019926 2 
3 0.019521 2 
0 0.018183 3 
5 0.013695 1 
0 0.005850 5 
5 --0"004396 2 
2 --0.015019 8 
5 --0.019547 9 
0 --0"008797 7 
9 0.008785 0 
5 
1 
4 
9 
4 

5 . 8 A  

-0.264990 6 0.092619 
-0.253803 7 0.085976 
-0.211421 8 0.063380 
-0.150840 8 0.033449 
-0.070149 1 -0.003743 

0.026564 3 -0.047985 
0.131848 3 -0.095758 
0.229040 3 -0.136719 
0.276280 8 -0.142172 
0.257308 0 -0.104103 
0.159202 3 -0.021617 

-0.009870 0 0.091671 
-0.168223 9 0.168531 
-0.160389 9 0-097045 
-0.018708 2 -0.060248 

0.009504 6 0.013736 4 -0.072112 
-0.004528 8 -0.079910 9 0.051375 
-0.008106 3 -0.088615 2 0.076403 

0.004852 3 0.029424 1 -0.050710 
0.012878 3 0.073917 8 -0.125271 

2 0.004121 6 -0.031495 4 -0.044870 
8 -0.010409 9 -0.140283 2 0.072390 
1 -0-019544 7 -0.146065 9 0.121462 
4 -0.021466 4 -0.071333 8 0.101054 
7 -0.019799 1 0.010172 3 0-060491 
7 -0-016013 2 0.077120 5 0.015763 
9 -0.010258 7 0.137873 6 -0.036003 
4 -0.005118 4 0.176723 2 -0.074234 
4 -0.004032 8 0.164172 3 -0.068053 
2 -0-005313 9 0-114888 5 -0.034122 
5 -0.003862 8 0.085926 2 -0.025386 

The matrix It~ 

8.4 h 10 h 15 h 20 h 

9 0-179436 4 -0-014693 4 -0-129654 1 
0 0.169594 4 -0-011454 7 
0 0.134213 1 -0.002566 9 
5 0.085293 7 0.006601 6 
5 0.022132 5 0.015326 3 
5 -0.053146 1 0.026023 1 
0 -0.134524 0 0.038259 8 
2 -0.207058 0 0.046415 9 
7 -0.231081 9 0.033181 0 
8 -0.193419 5 -0.003643 9 
9 -0.087306 4 -0.057149 1 
2 0.073980 3 -0.111700 2 
8 0.205438 4 -0.115697 1 
3 0.155972 9 0.003026 5 
9 -0.019966 8 0.153629 5 
7 -0.053035 8 0.115075 0 
8 0.062766 1 -0.067444 3 
4 0.078199 0 -0.122949 7 
1 -0.059764 2 0.018991 5 
6 -0.122810 8 0.141556 8 
7 -0.011337 6 0.108382 2 
0 0.123572 1 0.006983 8 
3 0.161222 1 -0.060636 4 
9 0.112345 7 -0.074504 2 
3 0.045959 4 -0.063286 8 
2 -0.016659 9 -0.037439 2 
5 -0.081479 7 0.002062 8 
5 -0.127545 1 0.031017 7 
0 -0.120187 5 0.018441 0 
2 -0.076523 8 -0.014314 7 
7 -0.058005 4 -0.014155 8 

3O A 
0-058771 1 

-0.120634 4 0.053461 0 
-0.090396 5 0.037334 2 
-0.051151 0 0.018271 2 
-0.003056 5 -0-003401 9 

0.054498 9 -0-029897 8 
0.117249 3 -0.059820 2 
0.170880 8 -0.084480 2 
0.175354 8 -0.079007 0 
0.120324 0 -0.038639 5 
0.007101 4 0.030587 6 

-0.142759 1 0.110240 5 
-0 .231466  7 0.131760 5 
-0.101274 6 -0.005593 5 

0.138242 8 -0.188792 4 
0.130701 6 -0.129213 1 

-0.091617 9 0.115269 8 
-0.145726 1 0.191358 0 

0-060128 2 0-007608 0 
0.200295 3 -0.152796 6 
0-099066 6 -0.113799 6 

-0.073062 2 0.008157 3 
-0.153889 0 0-081260 5 
-0-134042 9 0.084560 0 
-0 -081996  4 0.059819 0 
-0.020210 0 0.021341 4 

0.054389 9 -0.030849 6 
0-108354 0 -0-066385 7 
0.093690 0 -0.045718 2 
0.038851 8 0.002839 1 
0.027122 6 0.008448 9 

T h e  m a t r i c e s  

T h e  m a t r i c e s  B ' ,  A '  a n d  HE a r e  p r e s e n t e d ,  t o g e t h e r  
w i t h  t h e  e l e m e n t s  on  t h e  d i a g o n a l  of t h e  m a t r i x  CC '  

w h i c h  g o v e r n  t h e  a c c u r a c y  w i t h  w h i c h  t h e  e l e m e n t s  
of t h e  m a t r i x  ~ a r e  d e t e r m i n e d .  T h e s e  l a t t e r  a re  as 
fo l lows  : 

19108-81666 270.47898 32.87454 3.11407 

~ ~ 0 
0.55526 0.30882 0.05548 0.00665 

T h e  w r i t e r  is v e r y  g r a t e f u l  to  P r o f e s s o r s  W.  L.  B r a g g  
a n d  N.  F .  M o t t  a n d  to  D r  W.  H.  T a y l o r  fo r  t h e  pro-  
v i s ion  of fac i l i t i e s  a n d  fo r  m u c h  h e l p  a n d  e n c o u r a g e -  
m e n t ,  t o  D r  P .  B.  H i r s c h  fo r  m u c h  a d v i c e  a n d  m a n y  

h e l p f u l  d i scuss ions ,  to  D r  M. V. W i l k e s  a n d  t h e  s t a f f  
of  t h e  U n i v e r s i t y  M a t h e m a t i c a l  L a b o r a t o r y ,  C a m -  
b r idge ,  fo r  t h e  u se  of t h e  c o m p u t o r  E D S A C ,  a n d  to  

the National Coal Board for the financial support for 
this work. 
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